The generator matrix 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 1 4X 1 1 1 3X 1 1 1 1 0 1 1 1 2X 1 1 X 0 1 1 1 1 1 3X 1 1 1 1 1 1 1 1 1 2X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 3X 2X X 1 3X+2 3X+3 3X+1 2X+1 4X+1 3X+4 2 2X+4 X+3 3 1 X+4 4X+2 1 X+3 4X+3 0 1 4 2 2X+2 1 1 3X+4 2X+4 4X+1 1 4X+3 2X+2 1 2X X+4 2X+1 3X+2 0 2X+3 1 4X+4 X X+4 2X 3X 4 2X+3 3X 1 1 X+2 4 2X+1 2X X+1 3X+2 X 1 4X+1 2X+1 0 X+4 4X+4 4X+1 3 3X+4 X 0 0 1 3X+1 2 4 X+4 3X+4 4X+4 3X+2 3X+3 X X+2 2X+2 3X X+1 4X+3 2 1 0 1 2X X+2 2X+3 X+3 X+4 2X+3 X+1 2X+4 3X 3X+1 3 2X+1 X+1 4X+4 3X 4X+2 1 3 4X+2 1 X 2X 2X+4 4X+2 3X+2 3X 2X+1 2X+3 4X+3 4X+3 3X+3 3X+2 4X+3 2 2X 3X+1 0 1 X+1 2X+4 X X+2 X+1 3X+1 4X+2 3X+2 2X 3X+3 4X+3 3X+3 generates a code of length 71 over Z5[X]/(X^2) who´s minimum homogenous weight is 274. Homogenous weight enumerator: w(x)=1x^0+1680x^274+772x^275+3780x^279+736x^280+2940x^284+520x^285+1900x^289+560x^290+1360x^294+480x^295+840x^299+32x^300+24x^305 The gray image is a linear code over GF(5) with n=355, k=6 and d=274. This code was found by Heurico 1.16 in 0.989 seconds.